Selasa, 08 Desember 2009

gerak pada benda langit

PENERAPAN HUKUM GRAVITASI NEWTON PADA BENDA-BENDA ANGKASA

Gaya gravitasi menyebabkan bumi dan planet-planet dalam tata surya kita tetap mengorbit pada matahari. Gaya gravitasi antara bulan dan bumi menyebabkan trjadinya pasang surut air laut dan berbagai macam fenomena alam. Berikut ini merupakan contoh penerapan hokum Gravitasi Newton pada benda-benda angkasa.

  1. Gaya antara Matahari dan Planet

Gaya yang muncul akibat interaksi antara matahari dengan planet bukan hanya gaya gravitasi. Pada system tersebut juga bekerja gaya sentripetal (Fs) yang arahnya menuju pusat orbit planet. Gaya sentripetal dapat dirumuskan sebagai berikut

Fs = m . V2/R

Fs = gaya sentripetal (N)

m = massa planet (kg)

V = kelajuan planet mengorbit matahari (m/s)

R = jarak matahati ke planet (km)

Massa matahari dapat ditentukan dengan rumus

M = (V2 . R) / G

M = massa matahari (kg)

Jika kita asumsikan bahwa lintasan planet mengelilingi matahari membentuk lingkaran, kelajuan planet mengitari matahari adalah

V = (2π . R) / T

T = waktu revolusi planet (tahun)

M = (4π2 . R3) / (G . T2)

  1. Gaya pada Satelit

Gaya sentripetal yang dialami satelit beradal dari gaya gravitasi planet yang bekerja pada satelit tersebut. Besarnya kelajuan satelit mengitari planet dapat diketahui dengan rumus berikut.

Vs = √(G . m) / r

Vs = kelajuan satelit (m/s)

G = tetapan gravitasi (6, 672 . 10-11 N m2/kg2)

m = massa planet (kg)

Senin, 07 Desember 2009

hukum kekekalan momentum

HUKUM KEKEKALAN MOMENTUM

Hukum kekekalan momentum diterapkan pada proses tumbukan semua jenis, dimana prinsip impuls mendasari proses tumbukan dua benda, yaitu I1 = -I2.

Jika dua benda A dan B dengan massa masing-masing MA dan MB serta kecepatannya masing-masing VA dan VB saling bertumbukan, maka :

MA VA + MB VB = MA VA + MB VB

VA dan VB = kecepatan benda A dan B pada saat tumbukan

VA dan VB = kecepatan benda A den B setelah tumbukan.

Dalam penyelesaian soal, searah vektor ke kanan dianggap positif, sedangkan ke kiri dianggap negatif.

Dua benda yang bertumbukan akan memenuhi tiga keadaan/sifat ditinjau dari keelastisannya,

a. ELASTIS SEMPURNA : e = 1

e = (- VA' - VB')/(VA - VB)

e = koefisien restitusi.
Disini berlaku hukum kokokalan energi den kokekalan momentum.

b. ELASTIS SEBAGIAN: 0 < e < 1
Disini hanya berlaku hukum kekekalan momentum.

Khusus untuk benda yang jatuh ke tanah den memantul ke atas lagi maka koefisien restitusinya adalah:

e = h'/h

h = tinggi benda mula-mula
h' = tinggi pantulan benda

C. TIDAK ELASTIS: e = 0
Setelah tumbukan, benda melakukan gerak yang sama dengan satu kecepatan v',

MA VA + MB VB = (MA + MB) v'

Disini hanya berlaku hukum kekekalan momentum

Contoh:

1. Sebuah bola dengan massa 0.1 kg dijatuhkan dari ketinggian 1.8 meter dan mengenai lantai, kemudian dipantulkan kembali sampai ketinggian 1.2 meter. Jika g = 10 m/det2.
Tentukanlah:
a. impuls karena beret bola ketika jatuh.
b. koefisien restitusi

Jawab:

a. Selama bola jatuh ke tanah terjadi perubahan energi potensial menjadi energi kinetik.

Ep = Ek

m g h = 1/2 mv2 ® v2 = 2 gh

® v = Ö2 g h

impuls karena berat ketika jatuh:

I = F . Dt = m . Dv

= 0.1Ö2gh = 0.1 Ö(2.10.1.8) = 0.1.6 = 0,6 N det.

b. Koefisien restitusi:

e = Ö(h'/h) = Ö(1.2/1.8) = Ö(2/3)

2. Sebuah bola massa 0.2 kg dipukul pada waktu sedang bergerak dengan kecepatan 30 m/det. Setelah meninggalkan pemukul, bola bergerak dengan kecepatan 40 m/det berlawanan arah semula. Hitung impuls pada tumbukan tersebut !

Jawab:

Impuls = F . t = m (v2 - v1)

= 0.2 (-40 - 30)

= -14 N det

Tanda berarti negatif arah datangnya berlawanan dengan arah datangnya bola.

3. Sebuah peluru yang massanya M1 mengenai sebuah ayunan balistik yang massanya M2. Ternyata pusat massa ayunan naik setinggi h, sedangkan peluru tertinggal di dalam ayunan. Jika g = percepatan gravitasi, hitunglah kecepatan peluru pada saat ditembakkan !

Jawab:

Penyelesaian soal ini kita bagi dalam dua tahap, yaitu:

1. Gerak A - B.

Tumbukan peluru dengan ayunan adalah tidak elastis jadi kekekalan momentumnya:

M1VA + M2VB = (M1 + M2) V
M1VA + 0 = (M1 + M2) V

VA = [(M1 + M2)/M1] . v

2. Gerak B - C.
Setelah tumbukan, peluru dengan ayunan naik setinggi h, sehingga dapat diterapkan kekekalan energi:

EMB = EMC

EpB + EkB = EpC + EkC

0 + 1/2 (M1 + M2) v2 = (M1 + M2) gh + 0

Jadi kecepatan peluru: VA = [(M1 + M2)/M1] . Ö(2 gh)

d. ELASTISITAS KHUSUS DALAM ZAT PADAT

Zat adalah suatu materi yang sifat-sifatnya sama di seluruh bagian, dengan kata lain, massa terdistribusi secara merata. Jika suatu bahan (materi) berupa zat padat mendapat beban luar, seperti tarikan, lenturan, puntiran, tekanan, maka bahan tersebut akan mengalami perubahan bentuk tergantung pada jenis bahan dan besarnya pembebanan. Benda yang mampu kembali ke bentuk semula, setelah diberikan pembebanan disebut benda bersifat elastis.

Suatu benda mempunyai batas elastis. Bila batas elastis ini dilampaui maka benda akan mengalami perubahan bentuk tetap, disebut juga benda bersifat plastis.

momentum, impuls, dan tumbukan

A. Pengertian Momentum.
Momentum suatu benda adalah hasil kali massa dan kecepatan.
Dirumuskan dengan persamaan:

p = m.v m = massa ( kg)
v = kecepatan ( m/s )
p = momentum ( kg.m/s )
Momentum juga disebut jumlah gerak.
Momentum adalah besaran vector. Momentum 45 kgm/s ke utara berbeda dengan momentum 45 kgm/s ke selatan, walaupun nilai keduanya sama. Penjumlahan momentum mengikuti aturan penjumlahan vector. Misal momentum p1 dan p2 membentuk sudut α , maka resultan/ jumlah kedua momentum tersebut dapayt dituliskan dengan persamaan :
p1
p
p2
α –––––––––––––––––––––––––––––––
p = √ p12 + p22 + 2 p1 p2 cos α





B. Pengetian Impuls.
Impuls adalah hasil kali antara gaya yang bekerja dan selang waktu gaya itu bekerja. Impuls juga sering disebut pukulan.
Dirumuskan dengan persamaan :

I = F. ∆t F = gaya ( N )
∆t = selang waktu ( s )
I = Impuls ( Ns )
Impuls merupakan besaran vector.
C. Hubungan antara imupls dan momentum.
Sebuah benda massa m mula-mula bergerak dengan kecepatan v1, kemudian dipukul dengan gaya F hingga kecepatannya menjadi v2, seperti gambar di bawah, maka besarnya impuls yang bekerja pada benda tersebut adalah:
∆t
v1
v2
F

m m


Sesuai dengan hukum II Newton:

I = F. ∆t , karena
v2 – v1
F = m.a dan a = –––––––––––, maka :
∆t
v2 – v1
I = m.–––––– . ∆t
∆t
I = m (v2 – v1 ) –––––> I = m v2 – m v1 atau I = p2 – p1


Dapat juga dituls I = ∆p ( Impuls merupakan perubahan momentum benda )
Contoh Soal
Sebuah benda massa 5 kg bergerak dengan kecepatan 10m/s. Hitunglah momentum yang dimiliki benda!
Penyelesian : Diketahui : m = 5 kg; v = 10 m/s
Ditanya : p = …?
Jaab : p = m.v = 5.10 = 50 kgm/s

Sebuah benda mula-mula bergerak ke utara dengan kecepatan 6 m/s, kemudian berbelok ke barat dengan kecepatan 8 m/s. Apabila massa benda 50 kg, berpakah momentum total yang dimiliki benda ?
Penyelesaian : Diketahui : v1 = 6 m/s; v2 = 8 m/s; m = 5 kg
Ditanya : p = …?
Jawab : p1 = m. v1 = 50.6 = 300 kgm/s
p1
p
P2 P2 = m. v2 = 50.8 = 400 kgm/s


––––––– –––––––––
p = √ p12 + p22 = √ 3002 + 4002 = 500 kgm/s


Sebuah gaya 25 N bekerja pada sebuah benda dalam selang waktu 0,2 sekon. Hitunglah impuls yang dikerjakan gaya tersebut pada benda
Penyelesaian : Diketahui : F = 25 N; ∆t = 0,2 s
Ditanya : I = …?
Jawab : I = F. ∆t = 25. 0,2 = 5 Ns

Sebuah bola massanya 50 gram dilempar dengan kecepatan 10 m/s, kemudian dipukul dengan gaya F hingga kecepatannya 20 m/s berlawanan arah dengan kecepatan semula.
Hitunglah impuls yang dikerjakan oleh gaya tersebut!
Jika besarnya gaya F = 150 N, berapa lama pemukul menyentuh bola?
Penyelesaian : Diketahui : m = 50 gram = 50.10–3 kg; v1 = – 10 m/s;
v2 = 20 m/s
Ditanya : a. I = …?
b. Jika F = 150 N –––> ∆t = …?
Jawab : a. I = m.( v2 – v1 ) = 50.10–3 [20 – (-10)]
= 50.10–3. 30 = 1500.10–3 = 1,5 Ns
b. I = F. ∆t ––––> 1,5 = 150. ∆t –––> ∆t = 0,01 s
D. Hukum Kekekalan Momentum dan Tumbukan.
“Jumlah momentum suatu sistem sebelum dan sesudah tumbukan akan selalu tetap”
Pernyataan di atas disebut hukum kekekalan momentum dan ditulis dengan persamaan:

m1.v1 + m2.v2 = m1.v1’ + m2.v2’ m1 = massa benda 1
m2 = massa benda 2
v1 = kecepatan benda 1 sebelum tumbukan
v2 = kecepatan benda 2 sebelum tumbukan
v1’ = kecepatan benda 1 sesudah tumbukan
v2’ = kecepatan benda 2 sesudah tumbukan

Jenis-jenis Tumbukan
a. Tumbukan lenting sempurna (elastis sempurna)
Tumbukan lenting sempurna yaitu tumbukan dimana tidak ada energi kinetik yang hilang dari sistem. Dalam tumbukan ini berlaku hukum kekekalan momentum dan hukum kekekalan energi kinetik.
Dalam hal ini berlaku persamaan :
m1.v1 + m2.v2 = m1.v1’ + m2.v2’ ……………………….(1) dan
½ m1.v12 + ½ m2.v22 = ½ m1.(v1’)2 + ½ m2.(v2’)2 ……..(2)

Dengan membagi persamaan (2) dengan persamaan (1), maka akan didapatkan

persamaan : v1 + v1’ = v2 + v2’

b. Tumbukan tidak lenting sama sekali
Pada tumbukan tidak lenting sama sekali, sesudah tumbukan kedua benda bergabung menjadi satu dan bergerak bersama-sama. Dengan demikian, maka kecepatan kedua benda setelah bertumbukan adalah sama.: v1’ = v2’ = v’
Pada tumbukan ini persamaan hukum kekekalan momentum dapat ditulis sbb:

m1.v1 + m2.v2 = m1.v1’ + m2.v2’, karena v1’ = v2’ = v’, maka
m1.v1 + m2.v2 = m1.v’ + m2.v’
atau dapat juga ditulis :
m1.v1 + m2.v2 = (m1 + m2).v’

v’ = kecepatan benda setelah tumbukan ( m/s )
Contoh Soal
1. Seorang penembak memegang sebuah senapan 3 kg dengan bebas sehingga membiarkan senapan bergerak secara bebas ketika menembakkan sebutir peluru bermassa 5 gram. Peluru itu keluar dari moncong senapan dengan kecepatan horisontal 300 m/s. Berapa kecepatan hentakan senapan ketika peluru ditembakkan?
Penyelesaian :
Diketahui : Benda 1 (senapan) m1 = 3 kg; v1 = 0
Benda 2 (peluru ) m2 = 5 g ; v2 = 0 ; v2’ = 300 m/s.
Ditanya : v1’ = …?
Jawab :Gunakanlah hukum kekekalan momentum!
m1.v1 + m2.v2 = m1.v1’ + m2.v2’
3.0 + 5.10–3.0 = 3. v1’ + 5.10–3. 300
0 = 3. v1’ + 1,5
–3. v1’ = 1,5 –––––––––> v1’ = 1,5/–3 = –0,5 m/s
2. Dua nelayan sedang berada di perahu yang bergerak dengan kecepatan 2 m/s. Massa perahu 200 kg dan massa tiap nelayan 50 kg. Berapa kecepatan perah sesaat sesudah :
a. Seorang nelayan terjatuh
b. Seorang nelayan melompat dari perahu dengan kecepatan 4 m/s searah dengan gerak perahu
c. Seorang nelayan melompat dari perahu dengan kecepatan 4 m/s berlawanan arah dengan gerak perahu
Penyelesaian :
Diketahui : m1 = massa perahu + massa satu orang
= 200 + 50 = 250 kg
m2 = massa satu orang = 50 kg
v1 = v2 = v = 2 m/s;
Ditanya : a. v1’ = …? Jika v2’ = 0
b. v1’ = …? Jika v2’ = 4 m/s
c. v1’ = …? Jika v2’ = – 4 m/s
Jawab : Gunakanlah hokum kekekalan momentum
a. m1.v1 + m2.v2 = m1.v1’ + m2.v2’
250.2 + 50.2 = 250. v1’ + 50. 0
500 + 100 = 250. v1’ + 0
250. v1’ = 600 –––––––––> v1’ = 600/250 = 2,4 m/s
b. m1.v1 + m2.v2 = m1.v1’ + m2.v2’
250.2 + 50.2 = 250. v1’ + 50. 4
500 + 100 = 250. v1’ + 200
250. v1’ = 400 –––––––––> v1’ = 400/250 = 1,6 m/s
c. m1.v1 + m2.v2 = m1.v1’ + m2.v2’
250.2 + 50.2 = 250. v1’ + 50.(– 4)
500 + 100 = 250. v1’ – 200
250. v1’ = 800 –––––––––> v1’ = 800/250 = 3,2 m/s

3. Sebuah bola dengan massa 40 gram bergerak ke kanan dengan kelajuan 30 m/s menumbuk bola lain yang massanya 80 gram yang mula-mulla diam. Jika tumbukan lenting sempurna, berapakah kecepatan masing-masing bola setelah tumbukan?
Penyelesaian :
Diketahui : m1 = 40 gram; m2 = 80 gram;
v1 = 30 m/s; v2 = 0
Ditanya : v1’ = …? dan v2’ = …? (tumbukan lenting sempurna)
Jawab : Gunakanlah persamaan : v1 + v1’ = v2 + v2’
30 + v1’ = 0 + v2’ –––> v2’ = 30 + v1’
Hukum kekekalan momentum:
m1.v1 + m2.v2 = m1.v1’ + m2.v2’
40.30 + 80.0 = 40. v1’ + 80.( 30 + v1’)
1200 + 0 = 40. v1’ + 2400 + 80.v1’
1200 – 2400 = 120. v1’
–1200 = 120. v1’ ––––––> v1’ = –1200/120 = –10 m/s
Dari hasil v1’ = –10 m/s, maka v2’ = 30 + (–10) ––––> v2’ = 20 m/s
Tanda (–) menandakan bahwa arah kecepatan berlawanan arah dengan arah semula
4. Dua buah bola masing-masing massanya 2 kg dan 4 kg bergerak saling mendekati dengan kecepatan masing-masing 4 m/s dan 0,5 m/s, hingga saling bertumbukan. JIka tunbukan tidak lenting sama sekali, hitunglah kecepatan kedua bola setelah bertumbukan!
Penyelesaian :
Diketahui : m1 = 2 kg; m2 = 4 kg;
v1 = 4 m/s; v2 = –0,5 m/s
Ditanya : v1’ = …? dan v2’ = …? (tumbukan tidak lenting sama sekali)
Jawab : Gunakanlah persamaan : v1’ = v2’ = v’
Hukum kekekalan momentum:
m1.v1 + m2.v2 = m1.v1’ + m2.v2’
2. 4 + 4.(–0,5) = 2. v’ + 4.v’
8 – 2 = 6. v’ ––––––> 6. v’ = 6 ––––> v’ =6/6 = 1 m/s
Jadi kecepatan kedua benda setelah tumbukan adalah 1 m/s.

Soal Latihan:
Hitung besarnya momentum sebuak truk yang massanya 2 ton yang bergerak dengan kecepatan 20 m/s.
Sebuah benda bergeak dengan kecepatan 72 km/jam. Momentum yang dimiliki benda tersebut adalah 2.105 kgm/s. Hitunglah massa benda!
ebuah bneda massa 4kg dijatuhkan tanpa kecepatan awal dari ketinggian 45 m. Berapa momentum bneda saat menumbuk tanah?
Sebuah benda massa 3 kg diberi gaya kontan 12 N sehingga kecepatannya betambah dari 10 m/s menjadi 18 m/s. Hitunglah :
Impuls yang bekerja pada benda
Lama gaya itu bereaksi/ bekerja
Sebuah benda massa 4 kg bergerak dengan kecepatan 20 m/s dihentikan oleh suatu gaya konstan 50 N dalam selang waktu ∆t. Hiutnglah :
Impuls gaya
Selang waktu gaya bekerja (∆t.)
Sebuah peluru bermassa 20 gram ditembakkan horizontal dengan kecepatan 250 m/s. Berapa kecepatan senapan endorong bahu penembak?
Sebuah bus massa 10 ton bergerak dengan kelajuan 4 m/s, menabrak sebuah truk massa 20 ton yang seang bergerak dengan arah berlawanan dan sesudah bertabrakan keduanya berhenti. Berapa kelajuan truk itu sesaat sebelum bertabrakan?
Sebuah balok massa 2 kg meluncur dengan kecepatan 10 m/s spanjang lantai licin danmenumbuk balok lain yang mula-mula diam. Jika tumbukan lenting sempurna, hitunglah kecepatan masing-masing balok setelah tumbukan!
Sebuah kereta dinamik massa 2 kg begerak ke kanan dengan kecepatan 4 m/s menumbuk lenting sempurna kereta dinamik lain massa 4 kg yang sedang bergerak ke kiri dengan kecepatan 1 m/s. Hitung kecepatan masing-masing keret sesudah bertumbukan!
Dua benda massanya sama yaitu 2 kg, bergerak berlawanan arah dengan kecepatan masing-masing 10 m/s dan 5 m/s. Sesudah tumbukan kedua benda menyatu. Tentukan :
Kecepatan kedua benda sesudah tumbukan.
Energy kinetic yang hilang selama proses tumbukan.

ENIS-JENIS TUMBUKAN

Perlu anda ketahui bahwa biasanya dua benda yang bertumbukan bergerak mendekat satu dengan yang lain dan setelah bertumbukan keduanya bergerak saling menjauhi. Ketika benda bergerak, maka tentu saja benda memiliki kecepatan. Karena benda tersebut mempunyai kecepatan (dan massa), maka benda itu pasti memiliki momentum (p = mv) dan juga Energi Kinetik (EK = ½ mv2).

Nah, pada kesempatan ini kita akan mempelajari jenis-jenis tumbukan antara dua benda dan mencoba melihat hubungannya dengan Kekekalan Momentum dan Kekekalan Energi Kinetik. Napa yang ditinjau kekekalan momentum dan kekekalan energi kinetik-nya ? bukannya Cuma momentum dan energi kinetik ? yupz… maksudnya begini, ketika benda bergerak saling mendekati sebelum tumbukan, kedua benda itu memiliki Momentum dan Energi Kinetik. Yang menjadi persoalan, bagaimana dengan Momentum dan Energi Kinetik kedua benda tersebut setelah bertumbukan ? apakah momentum dan energi kinetik kedua benda ketika sebelum tumbukan = momentum dan energi kinetik benda setelah tumbukan ? agar dirimu semakin memahaminya, mari kita bahas jenis-jenis tumbukan satu persatu dan meninjau kekekalan momentum dan kekekalan energi kinetik pada kedua benda yang bertumbukan.

Secara umum terdapat beberapa jenis tumbukan, antara lain Tumbukan lenting sempurna, Tumbukan lenting sebagian dan Tumbukan tidak lenting sama sekali.

TUMBUKAN LENTING SEMPURNA

Tumbukan lenting sempurna tu maksudnya bagaimanakah ? Dua benda dikatakan melakukan Tumbukan lenting sempurna jika Momentum dan Energi Kinetik kedua benda sebelum tumbukan = momentum dan energi kinetik setelah tumbukan. Dengan kata lain, pada tumbukan lenting sempurna berlaku Hukum Kekekalan Momentum dan Hukum Kekekalan Energi Kinetik.

Hukum Kekekalan Momentum dan Hukum Kekekalan Energi Kinetik berlaku pada peristiwa tumbukan lenting sempurna karena total massa dan kecepatan kedua benda sama, baik sebelum maupun setelah tumbukan. Hukum Kekekalan Energi Kinetik berlaku pada Tumbukan lenting sempurna karena selama tumbukan tidak ada energi yang hilang. Untuk memahami konsep ini, coba jawab pertanyaan gurumuda berikut ini. Ketika dua bola billiard atau dua kelereng bertumbukan, apakah anda mendengar bunyi yang diakibatkan oleh tumbukan itu ? atau ketika mobil atau sepeda motor bertabrakan, apakah ada bunyi yang dihasilkan ? pasti ada bunyi dan juga panas yang muncul akibat benturan antara dua benda. Bunyi dan panas ini termasuk energi. Jadi ketika dua benda bertumbukan dan menghasilkan bunyi dan panas, maka ada energi yang hilang selama proses tumbukan tersebut. Sebagian Energi Kinetik berubah menjadi energi panas dan energi bunyi. Dengan kata lain, total energi kinetik sebelum tumbukan tidak sama dengan total energi kinetik setelah tumbukan.

Nah, benda-benda yang mengalami Tumbukan Lenting Sempurna tidak menghasilkan bunyi, panas atau bentuk energi lain ketika terjadi tumbukan. Tidak ada Energi Kinetik yang hilang selama proses tumbukan. Dengan demikian, kita bisa mengatakan bahwa pada peritiwa Tumbukan Lenting Sempurna berlaku Hukum Kekekalan Energi Kinetik.

Apakah tumbukan lenting sempurna dapat kita temui dalam kehidupan sehari-hari ? Tidak…. Tumbukan lenting sempurna merupakan sesuatu yang sulit kita temukan dalam kehidupan sehari-hari. Paling tidak ada ada sedikit energi panas dan bunyi yang dihasilkan ketika terjadi tumbukan. Salah satu contoh tumbukan yang mendekati lenting sempurna adalah tumbukan antara dua bola elastis, seperti bola billiard. Untuk kasus tumbukan bola billiard, memang energi kinetik tidak kekal tapi energi total selalu kekal. Lalu apa contoh Tumbukan lenting sempurna ? contoh jenis tumbukan ini tidak bisa kita lihat dengan mata telanjang karena terjadi pada tingkat atom, yakni tumbukan antara atom-atom dan molekul-molekul. Istirahat dulu ah…

Sekarang mari kita tinjau persamaan Hukum Kekekalan Momentum dan Hukum Kekekalan Energi Kinetik pada perisitiwa Tumbukan Lenting Sempurna. Untuk memudahkan pemahaman dirimu, perhatikan gambar di bawah.

Dua benda, benda 1 dan benda 2 bergerak saling mendekat. Benda 1 bergerak dengan kecepatan v1 dan benda 2 bergerak dengan kecepatan v2. Kedua benda itu bertumbukan dan terpantul dalam arah yang berlawanan. Perhatikan bahwa kecepatan merupakan besaran vektor sehingga dipengaruhi juga oleh arah. Sesuai dengan kesepakatan, arah ke kanan bertanda positif dan arah ke kiri bertanda negatif. Karena memiliki massa dan kecepatan, maka kedua benda memiliki momentum (p = mv) dan energi kinetik (EK = ½ mv2). Total Momentum dan Energi Kinetik kedua benda sama, baik sebelum tumbukan maupun setelah tumbukan.

Secara matematis, Hukum Kekekalan Momentum dirumuskan sebagai berikut :

Keterangan :

m1 = massa benda 1, m2 = massa benda 2

v1 = kecepatan benda sebelum tumbukan dan v2 = kecepatan benda 2 Sebelum tumbukan

v’1 = kecepatan benda Setelah tumbukan, v’2 = kecepatan benda 2 setelah tumbukan

Jika dinyatakan dalam momentum,

m1v1 = momentum benda 1 sebelum tumbukan, m1v’1 = momentum benda 1 setelah tumbukan

m2v2 = momentum benda 2 sebelum tumbukan, m2v’2 = momentum benda 2 setelah tumbukan

Pada Tumbukan Lenting Sempurna berlaku juga Hukum Kekekalan Energi Kinetik. Secara matematis dirumuskan sebagai berikut :

Kita telah menurunkan 2 persamaan untuk Tumbukan Lenting Sempurna, yakni persamaan Hukum Kekekalan Momentum dan Persamaan Hukum Kekekalan Energi Kinetik. Ada suatu hal yang menarik, bahwa apabila hanya diketahui massa dan kecepatan awal, maka kecepatan setelah tumbukan bisa kita tentukan menggunakan suatu persamaan lain. Persamaan ini diturunkan dari dua persamaan di atas. Persamaan apakah itu ? nah, mari kita turunkan persamaan tersebut… dipahami perlahan-lahan ya

Sekarang kita tulis kembali persamaan Hukum Kekekalan Momentum :

Kita tulis kembali persamaan Hukum Kekekalan Energi Kinetik :

Kita tulis kembali persamaan ini menjadi :

Ini merupakan salah satu persamaan penting dalam Tumbukan Lenting sempurna, selain persamaan Kekekalan Momentum dan persamaan Kekekalan Energi Kinetik. Persamaan 3 menyatakan bahwa pada Tumbukan Lenting Sempurna, laju kedua benda sebelum dan setelah tumbukan sama besar tetapi berlawanan arah, berapapun massa benda tersebut.

Koofisien elastisitas Tumbukan Lenting Sempurna

Wah, istilah baru lagi ne… apaan sie koofisien elastisitas ? sebelum gurumuda menjelaskan apa itu koofisien elastisitas, mari kita obok2 lagi rumus fisika. Kali ini giliran persamaan 3…

Kita tulis lagi persamaan 3 :

Perbandingan negatif antara selisih kecepatan benda setelah tumbukan dengan selisih kecepatan benda sebelum tumbukan disebut sebagai koofisien elatisitas alias faktor kepegasan (dalam buku Karangan Bapak Marthen Kanginan disebut koofisien restitusi). Untuk Tumbukan Lenting Sempurna, besar koofisien elastisitas = 1. ini menunjukkan bahwa total kecepatan benda setelah tumbukan = total kecepatan benda sebelum tumbukan. Lambang koofisien elastisitas adalah e. Secara umum, nilai koofisien elastisitas dinyatakan dengan persamaan :

e = koofisien elastisitas = koofisien restitusi, faktor kepegasan, angka kekenyalan, faktor keelastisitasan

TUMBUKAN LENTING SEBAGIAN

Pada pembahasan sebelumnya, kita telah belajar bahwa pada Tumbukan Lenting Sempurna berlaku Hukum Kekekalan Momentum dan Hukum Kekekakalan Energi Kinetik. Nah, bagaimana dengan tumbukan lenting sebagian ?

Pada tumbukan lenting sebagian, Hukum Kekekalan Energi Kinetik tidak berlaku karena ada perubahan energi kinetik terjadi ketika pada saat tumbukan. Perubahan energi kinetik bisa berarti terjadi pengurangan Energi Kinetik atau penambahan energi kinetik. Pengurangan energi kinetik terjadi ketika sebagian energi kinetik awal diubah menjadi energi lain, seperti energi panas, energi bunyi dan energi potensial. Hal ini yang membuat total energi kinetik akhir lebih kecil dari total energi kinetik awal. Kebanyakan tumbukan yang kita temui dalam kehidupan sehari-hari termasuk dalam jenis ini, di mana total energi kinetik akhir lebih kecil dari total energi kinetik awal. Tumbukan antara kelereng, tabrakan antara dua kendaraan, bola yang dipantulkan ke lantai dan lenting ke udara, dll.

Sebaliknya, energi kinetik akhir total juga bisa bertambah setelah terjadi tumbukan. Hal ini terjadi ketika energi potensial (misalnya energi kimia atau nuklir) dilepaskan. Contoh untuk kasus ini adalah peristiwa ledakan.

Suatu tumbukan lenting sebagian biasanya memiliki koofisien elastisitas (e) berkisar antara 0 sampai 1. Secara matematis dapat ditulis sebagai berikut :

Bagaimana dengan Hukum Kekekalan Momentum ? Hukum Kekekalan Momentum tetap berlaku pada peristiwa tumbukan lenting sebagian, dengan anggapan bahwa tidak ada gaya luar yang bekerja pada benda-benda yang bertumbukan.

Minggu, 06 Desember 2009

energi dan usaha

A. Usaha

Perhatikanlah gambar orang yang sedang menarik balok sejaruh d meter! Orang tersebut dikatakan telah melakukan kerja atau usaha. Namun perhatikan pula orang yang mendorong dinding tembok dengan sekuat tenaga. Orang yang mendorong dinding tembok dikatakan tidak melakukan usaha atau kerja. Meskipun orang tersebut mengeluarkan gaya tekan yang sangat besar, namun karena tidak terdapat perpindahan kedudukan dari tembok, maka orang tersebut dikatakan tidak melakukan kerja.

mendorong-dengan-gaya

Gambar:

Usaha akan bernilai bila ada perpindahan

Kata kerja memiliki berbagai arti dalam bahasa sehari-hari, namun dalam fisika kata kerja diberi arti yang spesifik untuk mendeskripsikan apa yang dihasilkan gaya ketika gaya itu bekerja pada suatu benda. Kata ’kerja’ dalam fisika disamakan dengan kata usaha. Kerja atau Usaha secara spesifik dapat juga didefinisikan sebagai hasil kali besar perpindahan dengan komponen gaya yang sejajar dengan perpindahan.

Jika suatu gaya F menyebabkan perpindahan sejauh s, maka gaya F melakukan usaha sebesar W, yaitu

gaya-serong


Persamaan usaha dapat dirumuskan sebagai berikut.

W = SF . s

W = usaha (joule)

F = gaya yang sejajar dengan perpindahan (N)

s = perpindahan (m)


diagram-gaya-serong

Jika suatu benda melakukan perpindahan sejajar bidang horisontal, namun gaya yang diberikan membentuk sudut a terhadap perpindahan, maka besar usaha yang dikerjakan pada benda adalah :

W = F . cos a . s

B. Energi

Energi merupakan salah satu konsep yang penting dalam sains. Meski energi tidak dapat diberikan sebagai suatu definisi umum yang sederhana dalam beberapa kata saja, namun secara tradisional, energi dapat diartikan sebagai suatu kemampuan untuk melakukan usaha atau kerja. Untuk sementara suatu pengertian kuantitas energi yang setara dengan massa suatu benda kita abaikan terlebih dahulu, karena pada bab ini, hanya akan dibicarakan energi dalam cakupan mekanika klasik dalam sistem diskrit.

Cobalah kalian sebutkan beberapa jenis energi yang kamu kenal ! Apakah energi-energi yang kalian kenal bersifat kekal, artinya ia tetap ada namun dapat berubah wujud ? Jelaskanlah salah satu bentuk energi yang kalian kenali dalam melakukan suatu usaha atau gerak!

Beberapa energi yang akan dibahas dalam bab ini adalah sebagai berikut.

1. Energi Potensial

Energi potensial adalah energi yang berkaitan dengan kedudukan suatu benda terhadap suatu titik acuan. Dengan demikian, titik acuan akan menjadi tolok ukur penentuan ketinggian suatu benda.

Misalkan sebuah benda bermassa m digantung seperti di bawah ini.

energi-potensial

Energi potensial dinyatakan dalam persamaan:

Ep = m . g . h

Ep = energi potensial (joule)

m = massa (joule)

g = percepatan gravitasi (m/s2)

h = ketinggian terhadap titik acuan (m)

Persamaan energi seperti di atas lebih tepat dikatakan sebagai energi potensial gravitasi. Di samping energi potensial gravitasi, juga terdapat energi potensial pegas yang mempunyai persamaan:

energi-pegas

Ep = ½ . k. Dx2 atau Ep = ½ . F . Dx

Ep = energi potensial pegas (joule)

k = konstanta pegas (N/m)

Dx = pertambahan panjang (m)

F = gaya yang bekerja pada pegas (N)

mobil-mainan

Gambar:

Mobil mainan memanfaatkan energi pegas diubah menjadi energi kinetik

Di samping energi potensial pegas, juga dikenal energi potensial gravitasi Newton, yang berlaku untuk semua benda angkasa di jagad raya, yang dirumuskan:

Ep = G M.m / r2

Ep = energi potensial gravitasi Newton (joule) selalu bernilai negatif. Hal ini menunjukkan bahwa untuk memindahkan suatu benda dari suatu posisi tertentu ke posisi lain yang jaraknya lebih jauh dari pusat planet diperlukan sejumlah energi (joule)

M = massa planet (kg)

m = massa benda (kg)

r = jarak benda ke pusat planet (m)

G = tetapan gravitasi universal = 6,672 x 10-11 N.m2/kg2

2. Energi Kinetik

Energi kinetik adalah energi yang berkaitan dengan gerakan suatu benda. Jadi, setiap benda yang bergerak, dikatakan memiliki energi kinetik. Meski gerak suatu benda dapat dilihat sebagai suatu sikap relatif, namun penentuan kerangka acuan dari gerak harus tetap dilakukan untuk menentukan gerak itu sendiri.

Persamaan energi kinetik adalah :

Ek = ½ m v2

Ek = energi kinetik (joule)

m = massa benda (kg)

v = kecepatan gerak suatu benda (m/s)

pompa-bensin

Gambar:

Energi kimia dari bahan bakar diubah menjadi energi kinetik oleh mobil

3. Energi Mekanik

Energi mekanik adalah energi total yang dimiliki benda, sehingga energi mekanik dapat dinyatakan dalam sebuah persamaan:

Em = Ep + Ek

Energi mekanik sebagai energi total dari suatu benda bersifat kekal, tidak dapat dimusnahkan, namun dapat berubah wujud, sehingga berlakulah hukum kekekalan energi yang dirumuskan:

Ep1 + Ek1 = Ep2 + Ek2

Mengingat suatu kerja atau usaha dapat terjadi manakala adanya sejumlah energi, maka perlu diketahui, bahwa berbagai bentuk perubahan energi berikut akan menghasilkan sejumlah usaha, yaitu:

W = F . s

W = m g (h1 – h2)

W = Ep1 – Ep2

W = ½ m v22 – ½ m v12

W = ½ F Dx

W = ½ k Dx2

Keterangan :

W = usaha (joule)

F = gaya (N)

m = massa benda (kg)

g = percepatan gravitasi (umumnya 10 m/s2 untuk di bumi, sedang untuk di planet

lain dinyatakan dalam persamaan g = G M/r2)

h1 = ketinggian awal (m)

h2 = ketinggian akhir (m)

v1 = kecepatan awal (m)

v2 = kecepatan akhir (m)

k = konstanta pegas (N/m)

Dx = pertambahan panjang (m)

Ep1 = energi potensial awal (joule)

Ep2 = energi potensial akhir (joule)

Dengan mengkombinasi persamaan-persamaan di atas, maka dapat ditentukan berbagai nilai yang berkaitan dengan energi. Di samping itu perlu pula dicatat tentang percobaan James Prescott Joule, yang menyatakan kesetaraan kalor – mekanik. Dari percobaannya Joule menemukan hubungan antara satuan SI joule dan kalori, yaitu :

1 kalori = 4,185 joule atau

1 joule = 0,24 kalor


C. Kaitan Antara Energi dan Usaha

Teorema usaha-energi apabila dalam sistem hanya berlaku energi kinetik saja dapat ditentukan sebagai berikut.

W = F . s

W = m a.s

W = ½ m.2as

Karena v22 = v21 + 2as dan 2as = v22 – v21 maka

W = ½ m (v22 – v21)

W = ½ m v22 – ½ m v21

W = D Ep

Untuk berbagai kasus dengan beberapa gaya dapat ditentukan resultan gaya sebagai berikut.

· Pada bidang datar

diagram-1

- fk . s

=

½ m (Vt2 – Vo2)

diagram-2

F cos a – fk . s = ½ m (Vt2 – Vo2)

  • · Pada bidang miring

diagram-3


- w sin a – fk . s =
½ m (Vt2 – Vo2)

diagram-4


(F cos bw sin a – fk) . s = ½ m (Vt2 – Vo2)

energi mekanik

Energi Mekanik

Energi mekanik adalah penjumlahan antara energi kinetik dengan energi potensial suatu benda.

Atau secara matematisnya

EM=Ep+Ek

EM=m.g.h+ {(1/2)mv^2}


dengan :

m=massa benda (kg)

g=percepatan grafitasi(m/s^2)

h=ketinggian (m)

v=kecepatan benda (m/s)

gerak harmonis sederhana

PENGERTIAN GHS

  1. Simpangan, Kecepatan, dan Percepatan GHS
    1. Simpangan GHS

      Untuk menghitung besarnya simpangan pada gerak harmonis sederhana digunakan rumus:

      Simpangan atau Simpangan
      Bila besarnya sudut awal (Θ 0) adalah 0 maka persamaan simpangannya menjadi:
      Simpangan Sudut Awal 0
      dengan:
      y = simpangan (m)
      A = amplitudo atau simpangan maksimum (m)
      t = waktu getar (s)
      w = kecepatan sudut (rad/s)

      Simpangan akan bernilai maksimum (ymaks) jika sin wt = 1 sehingga persamaannya menjadi:
      Simpangan Maksimal
    2. Kecepatan GHS

      Besarnya kecepatan gerak harmonis dapat dicari dengan persamaan:

      Kecepatan
      Besarnya kecepatan akan mencapai nilai maksimun bila besarnya cos wt = 1, sehingga persamaannya menjadi:
      Kecepatan Maksimal
    3. Percepatan GHS

      Besarnya percepatan pada gerak harmonis sederhana dapat dihitung dengan rumus:

      Percepatan atau Percepatan
      Dan besarnya percepatan akan mencapai nilai maksimal apabila besarnya sin wt = 1, sehingga:
      Percepatan Maksimal
      Besarnya percepatan bernilai negatif menunjukkan arah percepatan a berlawanan dengan arah perpindahan y (y adalah perpindahan dari titik keseimbangan)

    4. Sudut Fase, Fase, dan Beda Fase GHS

      Berdasarkan dari persamaan simpangan:

      Simpangan
      bila diturunkan akan menjadi,
      Sudut Fase
      Faktor Θ disebut sudut fase, yaitu posisi sudut selama benda bergerak harmonis.

      Fase atau tingkat getar adalah sudut fase dibagi dengan sudut tempuh selama satu putaran penuh. Sehingga besarnya fase dapat dihitung dari persamaan:

      Fase
      Nilai fase biasanya hanya diambil bilangan pecahannya saja Misalkannya saja besarnya fase getaran adalah 1/4, 11/4, 21/4 maka besarnya fase cukup disebut 1/4 saja karena posisi partikel yang bergetar untuk ketiga fase getar tersebut sama. Bilangan bulat di depan pecahan, menunjukkan banyaknya getaran penuh yang terlewati.

      Pembahasan tentang fase dibagi menjadi dua, yaitu:

      1. Beda fase getaran suatu titik dengan selang waktu t= t1 dan t= t2
        Persamaan yang dipakai untuk menghitung besarnya beda fase dengan selang waktu dari t1 sampai t2 adalah:
        Beda Fase dengan selang waktu
      2. Beda fase dua getaran pada waktu sama
        Kita juga dapat menghitung beda fase dua getaran pada waktu yang sama. Misalkan dua getaran masing - masing dengan periode T1 dan T2 maka beda fase keduanya setelah bergetar selama t sekon dapat dicari dengan persamaan:
        Beda Fase dengan waktu yang bersamaan
        Dua kedudukan tersebut akan dikatan sefase bila nilai beda fase merupakan bilangan cacah (tanpa pecahan ataupun desimal). Sebaliknya kedudukan akan dikatakan berlawanan fase apabila nilai beda fase berupa bilangan cacah+1/2(dengan pecahan ataupun desimal).
  2. Superposisi Dua Simpangan Gerak Harmonis yang Segaris

    Jika ada dua persamaan simpangan yang dialami oleh suatu partikel pada saat yang sama, maka simpangan akibat kedua getaran dapat dicaari dengan dua cara, yaitu secara grafis dan secara maematis. Berikut adalah pembahasan mengenai kedua cara tersebut.

    1. Secara Grafis

      Berikut adalah gambar Superposisi dua gerak harmonis sederhana,

      Grafik Superposisi
    2. Secara Matematis

      Dalam perhitungan secara matematis dua gerak harmonis memiliki simpangannya masing - masing. Untuk mencari simpangan superposisinya maka kedua simpangan itu dijumlahkan (y = y1 + y2) sehingga didapatkan persamaan sebagai berikut:

      Superposisi secara Matematis
  3. Penurunan Rumus Periode (T) dan Frekuensi (f)

    Dalam pembahasan suba bab ini, kita akan membahasa mengenai Periode (T) dan frekuensi (f). Dalam bahasan ini, akan membahas pula mengenai gaya pemulih. Karena itu, pembahasannya akan dibatasi hanya sampai pada pegas dan ayunan sederhana.

    1. Pegas

      Dalam pegas untuk perhitungan Periodenya digunakan rumus:

      Periode Pegas
      sedangkan besarnya frekuensi berbanding terbalik dengan periodenya ( f = 1/T), sehingga didapatkan rumus frekuensi sebagai berikut:
      Frekuensi Pegas
      dengan,
      m = massa beban (kg)
      k = konstanta pegas (N/m)
      Sedangkan bila konstanta pegas belum diketahui, konstatanya dapat dihitung dengan persamaan:
      Konstanta Pegas
      dengan,
      g = gaya gravitasi (9,8 N/kg atau 10 N/kg)
      x = perpanjangan pegas (m)
      Bila pegas yang dipakai lebih dari satu, maka untuk mencari konstantanya harus menggunakan konstanta total. Untuk menghitung konstanta total tergantung dari rangkaian pegas itu sendiri. Bila beberapa pegas dirangkai secara seri, maka untuk mencari konstanta totalnya mengunakan rumus:
      Konstanta Pegas Total Seri
      Sedangkan untuk pegas yang dirangkai paralel mengunakan rumus:
      Konstanta Pegas Total Paralel
    2. Ayunan Sederhana

      Sedangkan dalam ayunan sederhana untuk mencari besarnya Periode digunakan rumus:

      Periode Ayunan
      Kemudian dalam mencari frekuensi, karena nilai frekuensi berbanding terbalik dengan periode maka didapatkan rumus:
      Frekuensi Ayunan
      dengan,
      l = panjang tali (m)
      g = gaya gravitasi bumi (m/s2)

elastisitas

ELASTISITAS

Elastis atau elastisitas adalah kemampuan sebuah benda untuk kembali ke bentuk awalnya ketika gaya luar yang diberikan pada benda tersebut dihilangkan. Jika sebuah gaya diberikan pada sebuah benda yang elastis, maka bentuk benda tersebut berubah. Untuk pegas dan karet, yang dimaksudkan dengan perubahan bentuk adalah pertambahan panjang.

Namun, gaya yang diberikan juga memiliki batas-batas tertentu. Sebuah karet bisa putus jika gaya tarik yang diberikan sangat besar, melawati batas elastisitasnya. Demikian juga sebuah pegas tidak akan kembali ke bentuk semula jika diregangkan dengan gaya yang sangat besar. Jadi benda-benda elastis tersebut memiliki batas elastisitas.

  1. Bila suatu benda dikenai sebuah gaya dan kemudian gaya tersebut dihilangkan, maka benda akan kembali ke bentuk semula, berarti benda itu adalah benda elastis. Namun pada umumnya benda bila dikenai gaya tidak dapat kembali ke bentuk semula walaupun gaya yang bekerja sudah hilang. Benda seperti ini disebut benda plastis. Contoh benda elastis adalah karet ataupun pegas. Bila pegas ditarik melebihi batasn tertentu maka benda itu tidak akan elastis lagi. Lalu bagaimanakah hubungan pertambahan panjang dengan gaya tarik?

    Karena besarnya gaya pemulih sebanding besarnya pertambahan panjang, maka dapat dirumuskan bahwa:

    Gaya Pemulih

    dengan,
    k = konstanta pegas
    Fp = Gaya Pemulih (N)
    x = Perpanjangan Pegas (m)
    Persamaan inilah yang disebut dengan Hukum Hooke. Tanda negatif (-) dalam persamaan menunjukkan berarti gaya pemulih berlawanan arah dengan arah perpanjangan
  2. Modulus Elastisitas

    Yang dimaksud dengan Mosdulus Elastisitas adalah perbandingan antara tegangan dan regangan. Modulus ini dapat disebut dengan sebutan Modulus Young.

    1. Tegangan (Stress)
      Tegangan adalah gaya per satuan luas penampang. Satuan tegangan adalah N/m2 Secara matematis dapat dituliskan:
      Tegangan
    2. Regangan (Strain)
      Regangan adalah perbandingan antara pertambahan panjang suatu batang terhadap panjang awal mulanya bila batang itu diberi gaya. Secara matematis dapat dituliskan:
      Regangan

    Dari kedua persamaan di atas dan pengertian modulus elastisitas, kita dapat mencari persamaan untuk menghitung besarnya modulus elastisitas, yang tidak lain adalah:

    Modulus Elastisitas / Young
    Satuan untuk modulus elastisitas adalah N/m2
  3. Gerak Benda di Bawah Pengaruh Gaya Pegas

    Bila suatu benda yang digantungkan pada pegas ditarik sejauh x meter dan kemudian dilepas, maka benda akan bergetar. Percepatan getarnya itu dapat dihitung dengan persamaan:

    Percepatan Getar
    Dari persamaan di atas, kita mengetahui bahwa besarnya percepatan getar (a) sebanding dan berlawanan arah dengan simpangan (x)

Energi Potensial Elastis

Sebagaimana dijelaskan pada bagian awal tulisan ini, selain energi potensial gravitasi terdapat juga energi potensial elastis. EP elestis berhubungan dengan benda-benda yang elastis, misalnya pegas. Mari kita bayangkan sebuah pegas yang ditekan dengan tangan. Apabila kita melepaskan tekanan pada pegas, maka pegas tersebut melakukan usaha pada tangan kita. Efek yang dirasakan adalah tangan kita terasa seperti di dorong. Apabila kita menempelkan sebuah benda pada ujung pegas, kemudian pegas tersebut kita tekan, maka setelah dilepaskan benda yang berada di ujung pegas pasti terlempar…. perhatikan gambar di bawah. Jika dirimu mempunyai koleksi pegas, baik di rumah maupun di sekolah, silahkan melakukan percobaan ini untuk membuktikannya….

Ketika berada dalam keadaan diam, setiap pegas memiliki panjang alami, seperti ditunjukkan gambar a (lihat gambar di bawah). Jika pegas di tekan sejauh x dari panjang alami, diperlukan gaya sebesar FT (gaya tekan) yang nilainya berbanding lurus dengan x, yakni :

FT = kx

k adalah konstanta pegas (ukuran kelenturan/elastisitas pegas) dan besarnya tetap. Ketika ditekan, pegas memberikan gaya reaksi, yang besarnya sama dengan gaya tekan tetapi arahnya berlawanan. gaya reaksi pegas tersebut dikenal sebagai gaya pemulih. Besarnya gaya pemulih adalah :

FP = -kx

Tanda minus menunjukkan bahwa arah gaya pemulih berlawanan arah dengan gaya tekan. Ini adalah persamaan hukum Hooke. Persamaan ini berlaku apabila pegas tidak ditekan sampai melewati batas elastisitasnya (x tidak sangat besar).

Untuk menghitung Energi Potensial pegas yang ditekan atau diregangkan, terlebih dahulu kita hitung gaya usaha yang diperlukan untuk menekan atau meregangkan pegas. Kita tidak bisa menggunakan persamaan W = F s = F x, karena gaya tekan atau gaya regang yang kita berikan pada pegas selalu berubah-ubah selama pegas ditekan. Ketika menekan pegas misalnya, semakin besar x, gaya tekan kita juga semakin besar. Beda dengan gaya angkat yang besarnya tetap ketika kita mengangkat batu. Lalu bagaimana cara mengakalinya ?

Kita menggunakan gaya rata-rata. Gaya tekan atau gaya regang selalu berubah, dari F = 0 ketika x = 0 sampai F = kx (ketika pegas tertekan atau teregang sejauh x). Besar gaya rata-rata adalah :

x merupakan jarak total pegas yang teregang atau pegas yang tertekan (bandingkan dengan gambar di atas).

Usaha yang dilakukan adalah :

Nah, akhirnya kita menemukan persamaan Energi Potensial elastis (EP Pegas)….



Sabtu, 05 Desember 2009

hukum kepler

Hukum Gerakan Planet Kepler



Di dalam astronomi, tiga Hukum Gerakan Planet Kepler adalah
  • Setiap planet bergerak dengan lintasan elips, matahari berada di salah satu fokusnya.
  • Luas daerah yang disapu pada selang waktu yang sama akan selalu sama.
  • Perioda kuadrat suatu planet berbanding dengan pangkat tiga jarak rata-ratanya dari matahari.


Ketiga hukum diatas ditemukan oleh ahli matematika and astronomi jerman Johannes Kepler (1571–1630), yang menjelaskan gerakan planet di dalam tata surya. Hukum diatas menjabarkan gerakan dua benda yang saling mengorbit.

Karya Kepler didasari oleh data observasi Tycho Brahe, yang diterbitkannya sebagai 'Rudolphine tables'. Sekitar tahun 1605 Kepler menyimpulkan bahwa data posisi planet hasil observasi Brahe mengikuti rumusan matematika cukup sederhana yang tercantum diatas.

Hukum Kepler mempertanyakan kebenaran astronomi dan fisika warisan zaman Aristoteles dan Ptolemaeus. Ungkapan Kepler bahwa Bumi beredear sekeliling, berbentuk elips dan bukannya epicycle, dan membuktikan bahwa kecepatan gerak planet bervariasi, merubah astronomi dan fisika. Hampir seabad kemudian Isaac Newton mendeduksi Hukum Kepler dari rumusan hukum karyanya, hukum gerak dan hukum gravitasi Newton, dengan menggunakan Euclidean geometry klasik.

Pada era modern, hukum kepler digunakan untuk aproximasi orbit satelit dan benda-benda yang mengorbit matahari. Yang semuanya belum ditemukan pada saat Kepler hidup. (contoh: planet luar dan asteroid) Hukum ini kemudian diaplikasikan untuk semua benda kecil yang mengorbit benda lain yang jauh lebih besar, walaupun beberapa aspek seperti gesekan atmosfer (contoh: gerakan di orbit rendah), atau relativitas (contoh: prosesi preihelion merkurius), dan keberadaan benda lainnya dapat membuat hasil hitungan tidak akurat dalam berbagai keperluan.

Hukum Pertama

(Hukum Kepler pertama menempatkan Matahari di satu titik fokus edaran elips.)
"Setiap planet bergerak dengan lintasan elips, matahari berada di salah satu fokusnya."

Pada zaman Kepler, klaim diatas adalah radikal. Kepercayaan yang berlaku (terutama yang berbasis teori epicycle) adalah bahwa orbit harus didasari lingkaran sempurna. Pengamatan ini sangat penting pada saat itu karena mendukung pandangan alam semesta menurut Kopernikus. Ini tidak berarti ia kehilangan relevansi dalam konteks yang lebih modern.

Meski secara teknis elips yang tidak sama dengan lingkaran, tetapi sebagian besar planet planet mengikuti orbit yang bereksentrisitas rendah, jadi secara kasar bisa dibilang mengaproximasi lingkaran. Jadi, kalau ditilik dari observasi jalan edaran planet, tidak jelas kalau orbit sebuah planet adalah elips. Namun, dari bukti perhitungan Kepler, orbit orbit itu adalah elips, yang juga memeperbolehkan benda-benda angkasa yang jauh dari matahari untuk memiliki orbit elips. Benda-benda angkasa ini tentunya sudah banyak dicatat oleh ahli astronomi, seperti komet dan asteroid. Sebagai contoh Pluto, yang diobservasi pada akhir tahun 1930, terutama terlambat diketemukan karena bentuk orbitnya yang sangat elipse dan kecil ukurannya.

Hukum Kedua

(Illustrasi hukum Kepler kedua. Bahwa Planet bergerak lebih cepat didekat matahari dan lambat dijarak yang jauh. Sehingga jumlah area adalah sama pada jangka waktu tertentu.)
"Luas daerah yang disapu pada selang waktu yang sama akan selalu sama."

Secara matematis:

\frac{d}{dt}(\frac{1}{2}r^2 \dot\theta) = 0

dimana \frac{1}{2}r^2 \dot\theta adalah "areal velocity".

Hukum Ketiga

Planet yang terletak jauh dari matahari memiliki perioda orbit yang lebih panjang dari planet yang dekat letaknya. Hukum Kepelr ketiga menjabarkan hal tersebut secara kuantitativ.


"Perioda kuadrat suatu planet berbanding dengan pangkat tiga jarak rata-ratanya dari matahari."
Jika T1 dan T2 menyatakan periode dua planet, dan r1 dan r2 menyatakan jarak rata-rata mereka dari matahari, maka